Transfer Learning for Music Classification and Regression Tasks
نویسندگان
چکیده
In this paper, we present a transfer learning approach for music classification and regression tasks. We propose to use a pre-trained convnet feature, a concatenated feature vector using the activations of feature maps of multiple layers in a trained convolutional network. We show how this convnet feature can serve as a general-purpose music representation. In the experiments, a convnet is trained for music tagging and then transferred to other music-related classification and regression tasks. The convnet feature outperforms the baseline MFCC feature in all the considered tasks and several previous approaches aggregating MFCCs as well as lowand high-level music features.
منابع مشابه
Transfer Learning In Mir: Sharing Learned Latent Representations For Music Audio Classification And Similarity
This paper discusses the concept of transfer learning and its potential applications to MIR tasks such as music audio classification and similarity. In a traditional supervised machine learning setting, a system can only use labeled data from a single dataset to solve a given task. The labels associated with the dataset define the nature of the task to solve. A key advantage of transfer learnin...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملTransfer Learning by Supervised Pre-training for Audio-based Music Classification
Very few large-scale music research datasets are publicly available. There is an increasing need for such datasets, because the shift from physical to digital distribution in the music industry has given the listener access to a large body of music, which needs to be cataloged efficiently and be easily browsable. Additionally, deep learning and feature learning techniques are becoming increasin...
متن کاملBoosting for Regression Transfer
The goal of transfer learning is to improve the learning of a new target concept given knowledge of related source concept(s). We introduce the first boosting-based algorithms for transfer learning that apply to regression tasks. First, we describe two existing classification transfer algorithms, ExpBoost and TrAdaBoost, and show how they can be modified for regression. We then introduce extens...
متن کاملTree-Based Ensemble Multi-Task Learning Method for Classification and Regression
Multi-task learning is an important area of machine learning that tries to learn multiple tasks simultaneously to improve the accuracy of each individual task. We propose a new tree-based ensemble multi-task learning method for classification and regression (MT-ExtraTrees), based on Extremely Randomized Trees. MTExtraTrees is able to share data between tasks minimizing negative transfer while k...
متن کامل